TENKO 46T

INSTALLATION AND OPERATING INSTRUCTIONS

SPECIFICATIONS

TRANSMITTER

Plate Power Input to Final Modulation Harmonic Suppression Carrier Deviation Antenna Match

RECEIVER

Sensitivity Selectivity Intermediate Frequency Image Rejection Audio Output External Speaker Impedance

COMMON

Power Supply Power Consumption

Dimensions Net Weight

TUBES & SEMI-CONDUCTORS

V1	6BL8
V2	6BL8
V3	6BA6
V4	6BA6
V5	12AX7
V6	6BQ5
V7	6GH8
V8	6GH8
V9	6BA6
V10	6BQ5
V11	12AT7
D1, D2	1N60/1N34
D3	1S1588
D4	1S72
D5	10D1
D6	10D4
D7	10D4
D8, D9	10D4
D10, D11	10D6
D12	10D6

5 watts AM; up to 100% capability Better than 55 db down Better than .005% 50-75 ohms

.8 uV for 10 db S + N to N ratio 6 Khz bandwidth - 6 db 1st IF-11.275 Mhz; 2nd IF-455 Khz -75 db 4 watts 4-8 ohms

220 volts, 50/60 cycles AC; 12 volts DC AC -80 watts DC -3 1/2 amps rec.; 4 amps trans. 12" W \times 5" H \times 8 1/4" D 17 lbs

RF amp/1st Mixer 2nd Mixer/2nd Osc. IF Amp (455 Khz) IF Amp (455 Khz) 1st Audio/Modulator/Mic Preamp Audio Output/Modulator Local Osc. Converter/1st Osc. Buffer Amp RF Power Amp Buffer/Synthesizer

Meter Rectifier Det/AVC ANL Squelch bias Mod. booster Mod. Limiter Absorber B + Rectifier Bias Supply Rectifier

LICENSING INSTRUCTIONS

The TENKO 46T is a complete Citizens Band Two-Way radio station. It may be employed for any communication purpose covered by Volume VI, part 95 – Citizens Radio Service of F.C.C. Rules and Regulations. Copies of Volume VI are available for \$1.25 from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

It is illegal to operate the transmitter section of this transmitter prior to receiving a valid station license and call sign. Application for a station license and call sign is made on F.C.C. Form 505, which is available from any F.C.C. Field Office. No examination is necessary to receive a Citizens Band license.

The TENKO 46T has been designed for the person who wants full coverage on the Citizens Band channels. It will provide economical and reliable radio communication if installed and operated in accordance with instructions contained herein.

GENERAL DESCRIPTION

Receiver Section

The TENKO 46T is designed to receive AM signals in the 26.965 to 27.555 MHz Citizens Band. The circuit is a highly sensitive and selective dual-conversion super-het erodyne type with one RF and two IF amplifiers. Full 46 channels, crystal-controlled operation is provided by a frequency-synthesized circuit consisting of 14 crystals.

The receiver section includes an S Meter for reading signal strength, an adjustable squelch control to eliminate background noise when no signal is being received, an automatic noise limiter to suppress atmospheric and man-made interference, and a band spread which has a range of 2.5 KHz, which permits reception of stations that are transmitting slightly off frequency.

Transmitter Section

The transmitter is designed to transmit AM signals in the 26.965 to 27.555 MHz Citizens Band. The crystal synthesized circuit used in the receive section is common to the transmitter, and provides full 46 channel crystal-controlled operation. A push-to-talk ceramic microphone controls the reliable relay switching. Plate modulation with 100% capability is used with up to 5 watts plate power input to the final RF stage. An RF meter indicates relative RF power at the antenna during the transmit mode when the meter switch is in the appropriate position.

BASE STATION INSTALLATION

AC POWER CONNECTION

Select the AC power cord and attach the 8 – pin connector to the 8 – pin connector at the rear of the unit. ALWAYS LINE UP THE KEY WAY PROPERLY BEFORE PUSHING THE CABLE CONNECTOR ONTO THE TRANSCEIVER. DO NOT ATTEMPT TO FORCE THE CONNECTOR ONTO THE PINS, WHEN IT IS PROPERLY LINED UP, THE CONNECTOR WILL SLIP ON EASILY. MAKE CERTAIN THE TRANSCEIVER IS OFF(THE SWITCH IS LOCATED AT THE EXTREME COUNTER CLOCKWISE POSITION OF THE VOLUME CONTROL), THEN INSERT THE AC PLUG INTO THE AC OUTLET. FOR PROTECTION, THE AC INPUT TO THE TRANSCEIVER IS FUSED WITHIN THE UNIT.

MICROPHONE CONNECTION

Attach the four pin connector at the end of the microphone coil cord into the transceivers microphone connector in the center of the front panel. Be certain that it is secured firmly with the knurled ring.

ANTENNA CONNECTION

The antenna lead-in cable (RG-58U or RG8U) should be terminated with a PL-259 type coxial connector which should then be attached to the antenna connector at the rear of the transceiver.

MOUNTING BRACKET

The mobile mounting bracket may be used in a base installation by attaching it to the underside of the transceiver. When so used the four rubber feet may be attached with a bracket. This will allow the transceiver to be set at an angle, providing a better view of the front panel.

MOBILE INSTALLATION

TRANSCEIVER LOCATION

Before installating the TENKO 46T in the car, truck, boat, etc... make certain to use a location which permits the driver to operate the controls of the unit without interferring with his driving functions. The transceiver can be mounted to the underside of the instrument panel, on the floor, or above the drivers head if in a truck cab. Remove the bracket from the transceiver by loosening the four (4) knurled screws at the sides. Using the bracket as a pattern, locate the positions of the screws and drill holes for the four (4) self-threading screws which are provided.

After mounting the bracket, secure the transceiver to the bracket by means of a large narrow screws.

DC POWER CONNECTION

CAUTION: THE TENKO 46T IS DESIGNED FOR USE ONLY IN VEHICLES EMPLOYING A NEGATIVE GROUND SYSTEM. DO NOT USE IN POSITIVE GROUND VEHICLES!

The red wire in the DC power cable should be connected to the positive battery source of the vehicle. This lead is fused for 8 amps. Points normally available for connection are the accessory posts on the ignition switch, the accessory side of the fuse block, or directly to the positive lead of the vehicles battery. The black lead should be connected to any metal portion of the vehicle chassis.

When the red and black leads have been properly connected, the 8-pin connector of the DC power cord should then be attached to the power connector at the rear of the transceiver. Always line up the keyway properly before pushing the cable connector into the transceiver. Do not attempt to force the connector onto the pins, when properly lined up the connector will slip on easily.

MICROPNONE CONNECTION

Attach the 4-pin connector at the end of the microphones coil cord to the microphone connector in the center of the transceivers front plate. Secure it firmly by means of the narrowed securing ring.

ANTENNA

The type of antenna best suited for mobile operation is a vertically polarized whip which can be either of the loaded type, or a full quarter wave. Both types use a metal body of the vehicle as a ground plane. The antenna can be mounted on the trunk deck, either of the rear fenders or on the roof. When purchasing your mobile antenna, you will find full instructions for installation included with the antenna.

For optimum results of the mobile installation, the length of the coaxial cable should be ideally 11" 9" or multiples thereof. However, length other than multiples can provide optimum results if the antenna used can be tuned.

The lead-in cable should be terminated with a PL-259 Coaxial Connector which is then attached to the antenna connector at the rear of the transceiver.

OPERATING CONTROLS

- 1.) Illuminated Meter indicates strength of incoming signal in "S" unit; or RF antenna power of the transmitter.
- 2.) Band Switch this switch control is used to select the channel groups of operation.
- 3.) Channel Indicator illuminated dial shows channel to which the transceiver is set.
- 4.) Modulation Indicator operates when the unit is in the transmit position, light glows brighter as modulation reaches 100%.
- 5.) Transmitter Indicator TX ON while transmitting.
- 6.) Receiver Indicator RX ON during receive.
- 7). Speaker 5" round speaker mounted behind front plate.
- 8.) PA CB Switch CB position provides normal CB operations. PA position permits use of the transceiver as a public address system when in the transmit mode. When in the receive mode, the PA position enables you to monitor over the external speaker.
- 9.) Microphone Connector four pin connector for push-to-talk microphone provided with the unit.
- 10.) MIC. Compressor MOD. level control, this control, a pull-type switch, is used to modulation AUX.
- 11.) Channel Selector rotating switch selects any one of 46 CB channels.
- 12.) FINE TUNE Enables you to 'tune-in' stations that are off frequency.
- Volume / On-Off Switch controls output level from the speaker. When in the full counter clockwise position it operates as a power switch.
- 14.) Squelch Control this control is used to block out background noise when no signal is on the channel. Squelch is adjustable with higher sensitivity in the full clockwise position.
- 15.) TVI. Switch provides for low or high power transmission, depending on operating conditions.
- 16.) Load Control.
- 17.) Plate Control these two controls should be alternately adjusted to indicate maximum power on the meter when the meter is in the RF position.
- 18.) Antenna Connector this connector will accept a standard PL-259 from your base or mobil antenna.
- TVI Trap this is an adjustable network inserted with the antenna. When tuned correctly it suppresses television interference.
- 20.) Power Connecter this connector connects to either the AC or DC power cord.
- 21.) EXT. SPKR/PA standard phone jack for external speaker or headphones. Insertion of the plug into the jack automatically silences the internal speaker.
- 22.) Meter Adjust this adustment adjusts the needle of the "S" Meter.
- 23.) AUX-this connector is used to moduration signal source of tape and disk recorder output, etc.

OPERATING INSTRUCTIONS

RECEIVE MODE

Place the PA CB Switch in the CB position. Rotate the squelch control to the extreme counter clockwise position (without operating the stand-by switch), and select desired channel. Rotate the volume control knob until the on/off switch clicks, and the unit is in the on position. The meter light will glow softly. Advance the volume control about 50%. After approximately 20 seconds the tubes will warm up and you will hear the characteristic rushing sound of the receiver. Adjust the volume control to a comfortable listening level.

SQUELCH ADJUSTMENT

The squelch control is used to eliminate background noise when there are no signals present on the channel. To adjust the squelch control select a channel where there is no signal. Turn the volume up to a fairly high level. Rotate the squelch control clockwise until the background noise disappears. This point is called the "squelch threshold"; and at this squelch position the receiver will be quite when there is no signal on the channel, but an incoming signal will be able to overcome the squelch action and be heard. This control is variable, and as it is advanced the squelch action is increased and consequently a stronger signal is required to break the threshold. To receive extremely week signals or to disable the squelch circuit, merely turn the control fully counter-clockwise — do not operate the stand-by switch.

In the stand-by position of the squelch control the high voltages in the transceiver are switched off but the tube filament voltages are maintained. This reduces power consumption when the unit is not in actual use, while allowing the unit to remain in a ''warmed-up'' condition ready for instant use when needed.

FINE TUNE

The band spread control has a range of approximately 2.5 KHz; and can be used for tuning in a station that is slightly off frequency. The switch can be rotated either clockwise or counter clockwise to fine-tune stations that are either high or low in frequency. When using this control, tune for the best reception and the highest "S" meter reading.

S/RF METER

The meter is associated with a rocker switch which places it either in the "S" meter or RF Meter position.

During the receive mode, the "S" meter provides a relative indication of the signal strength of incoming signals. The S meter circuit has been preadjusted at the factory to indicate "S-9" with 100 micro-volts at the antenna input. The "S" meter should read "0" when in a receive position and with no antenna connected. To adjust if the meter is not at the "0" position, adjust the "Meter Adjust" grove at the rear of the set.

In the transmit mode, the meter will read relative antenna power output. The RF meter will read a true value only when the transceiver is connected to a 50-ohm resistive load. If the antenna and transmission line do not offer such a load, the meter reading will be inaccurate.

TRANSMIT MODE

IT IS ILLEGAL TO OPERATE THE TRANSMITTER SECTION OF THIS TRANSCEIVER PRIOR TO RE-CEIVING A VALID STATION LICENSE AND CALL SIGN. PART 95 OF THE F.C.C. RULES AND REGU-LATIONS DEALING WITH THE CITIZENS RADIO SERVICE MUST BE OBTAINED, READ AND UNDER-STOOD.

Before using the unit to transmit, make sure that the "PA-CB" switch is in the CB position. Select the channel on which you want to operate, making certain that there is no other traffic on that channel. To transmit, simply press the microphone button, then while holding it at approximately a 45 degree angle, speak into it at a normal voice level. If the meter switch is in the "RF" position it will indicate that you are radiating a signal. The modulation indicator ligth should flicker, indicating that you are modulating the carrier.

When the unit is transmitting, the receiver is silent – consequently reception is impossible when you are in the transmit mode. In like fashion, your signal cannot be heard by another station when it is transmitting. Each station must take its turn.

PUBLIC ADDRESS OPERATION

Provision has been made for utilizing the TENKO 46T for public address operation. For PA, connect an external 4-8 ohm speaker into the phone jack in the front of the unit. Set the "PA – CB" switch to PA, and press the push-to-talk button on the microphone and talk into it as you would when transmitting on a CB channel. Your voice will be heard on the external speaker it will not radiate into your antenna.

The phone jack may also be used to connect a headset for normal CB operations. When headsets are plugged into the phone jack, the loud speaker is automatically silenced.

WARNING

FCC REGULATIONS REQUIRE THAT ANY ADJUSTMENT MADE TO THE TRANSMITTER MUST BE MADE UNDER THE SUPERVISION OF, OR BY, A PERSON HOLDING A VALID FIRST OR SECOND CLASS RADIO TELEPHONE OPERATOR'S LICENSE.

As an aid to the service technician, this manual contains a complete voltage chart, a layout diagram identifying components, a schematic diagram, and a functional block diagram. Also included are instructions for aligning receiver and transmitter sections.

SIMPLE TROUBLE SHOOTING

TUBES

Tubes may be checked in a do-it-yourself tube tester in a neighborhood store, or may be taken to a service.shop for testing. Replace any weak or defective tubes with new ones of identical type. Before replacing tubes in the transceiver, refer to the diagram (on a following page) which shows the correct tube location.

SOLID-STATE DC POWER SUPPLY

This transceiver employs a solid-state (2-transistor) power supply circuit during 12 volts DC operation (no vibrator is used). The transistors, which are located on the rear panel, have been treated with a light protective coating to avoid possible oxidation. Under no circumstances should the transistors be allowed to come into contact with the vehicle chassis, metal brackets, etc. This will cause a short-circuit and may destroy the transistors.

PILOT LAMPS

There are two pilot lamps used in the transceiver. One of these is built into the meter, and the other provides illumination for the channel dial plate. Both are run considerably below their maximum rating and should therefore last almost indefinitely.

FUSES

The 12-volt DC power cable uses an "in-line" fuse. The value of this fuse is 8 amp. Provision has also been made for fusing the primary circuit during 220 volt AC operation by means of a 2 amp fuse located within the transceiver (remove bottom cover for access to the fuse).

In the event of complete failure (tube filaments and pilot lamps not lighting), the fuse should always be checked first. If it has failed, replace only with one of a similar rating. Repeated failure of a fuse would indicate a serious fault in the transceiver which should be investigated.

RECEIVER ALIGNMENT

455 KHz IF ADJUSTMENT

Connect the transceiver to a power source and attach the microphone. Turn volume to its mid-position squelch at minimum and the PA switch in the CB position. Set FINE TUNING to the mid-position (normal) and the CHANNEL selector to channel 13.

Connect an AC voltmeter (VTVM) across the speaker terminals in the transceiver. Alternatively, the meter can be connected to the "Phone" jack by means of a standard phone plug.

Connect a 455 KHz signal generator (modulated 30% at 1KHz.) to pin 8 of V2 (6BL8). Make certain the output frequency of the generator is within 1 KHz of 455 KHz. Increase generator output until the VTVM reads approximately 0.5 volts.

Adjust the top and bottom tuning cores of T3, T4 and T5 for maximum output. Reduce generator output progressively as circuits come into line so that VTVM reading does not exceed about 0.5 volts. When no further increase can be obtained by adjusting the cores, disconnect the signal generator and proceed with the 11.275 MHz IF adjustments.

11.275 MHz IF ADJUSTMENT

Connect the signal generator to pin 9 of V1 (6BL8), with the VTVM connected to the speaker terminals. Make sure the Fine Tuning control is in the normal, center position. Tune the generator in the vicinity of 11.275 MHz until a maximum reading is obtained on the VTVM. Reduce generator output level until the meter reads about 0.5 volts. Adjust top and bottom cores of T2 for maximum reading, reducing generator output if necessary so that reading does not exceed 0.5 volts.

SECOND OSCILLATOR

The second oscillator V2B (6BL8) is crystal-controlled. The Fine Tuning control permits fine tuning of the receiver and has a total range of about 2.5KHz. A normally functioning oscillator will develop approximately -1.5 to -8 volts at pin 9 of V2B. Differences in individual crystal activity will cause a variation in grid voltage for crystal to crystal.

LOCAL OSCILLATOR

The master local oscillator, V7B, is crystal-controlled and is used during both transmit and receive. A normally functioning oscillator will develop approximately -4.5 volts at pin 9 of V7B (see voltage charge). Differences in individual crystal activity will cause a variation in the voltage measured at this point.

A local oscillator is tuned as follows: adjust the bottom core of L7 for maximum negative reading at pin 9 of V7B with the channel selector switch set to channel 23, then back off from peak in a clock-wise direction to about 70% of the maximum reading. Check all channels for activity. A defective crystal will produce zero voltage at pin 9 in four consecutive channels.

After this adjustment has been made, check transmitter output frequency to make sure it is within FCC specification on all channels. Readjust L7 if necessary.

SYNTHESIZER, 2nd LOCAL OSCILLATOR

The synthesizer (V11B) is used during both transmit and receive. A normally functioning oscillator will develop approximately -0.3 volts at V7A pin 2 (see voltage chart), depending upon crystal activity. The output from V7A and the output from V7B produce a 38 MHz output in the plate circuit of V11B, T9 being tuned to this frequency.

RF ADJUSTMENTS

When it has been ascertained that all oscillators are functioning normally, connect the signal generator (modulated 30% at1KHz) to the antenna connector. Use RG58/U or equivalent 52 ohm cable. Set generator output to approximately 10μ V, and switch receiver to channel 13. Tune the generator around 27.115 MHz until a signal is heard in the receiver. Adjust the generator output frequency for maximum output voltage reading on the VTVM (at speaker terminals). Adjust the top and bottom tuning cores of T1 for maximum output.

"S" METER ADJUSTMENT

After receiver alignment has been completed, adjust RV1 for a "S-9" reading on the "S" meter with 100μ V at the antenna input and transceiver set to channel 13..

TRANSMITTER ALIGNMENT

The detailed operation and alignment of the local oscillator and synthesizer has been covered previously. Both oscillators are used for the transmit operation.

In the receive mode, B + is removed from V8 and V9 and a large bias is applied to the grid of the RF power output tube V10. In the transmit mode, B + is removed from V1, V2, V3 and V4 in the receiver and applied to V8 and V9 in the transmitter. The bias formerly applied to V10 is removed.

NOTE: Connect a 50 OHM dummy load to antenna connector before proceeding (use two 100 ohm 2 watt resistors in parallel).

Connect VTVM (with AC probe) to pin 1 of V9. With mike button pressed, adjust T10 for maximum reading on channel 13. A reading of approximately 1.4 volts is normal. Failure to obtain any reading may indicate trouble in the 11.275 MHz converter stage. If the receiver is normal, it is likely that the trouble lies beyond T9, in which case V8 or the 11.275 MHz crystal should be suspected. After this adjustment has been made, check transmitter output frequency to make sure it is within FCC specification on all channels. Readjust L6 if necessary.

Connect VTVM (with series resistor) to pin 2 of V10. Adjust L5 for maximum reading on channel 13. A reading of approximately -15 volts is normal. At this point, check all channels with an RF watt-meter connected to the antenna connector. Make sure that there is approximately equal power output on all channels. If output is low on some channels, slightly re-adjust L5 for equal reading on all channels.

MAXIMUM RF OUTPUT

CV5 (Load) and CV4 (Plate) should now be adjusted for maximum power output on the RF wattmeter. Adjustment of CV4 and CV5 affects the power input to the final amplifier. Remember, maximum RF input power has been set at 5 watts by the FCC.

MODULATION ADJUSTMENT

Connect a modulation monitor to the transceiver. Connect the shield lead of an audio generator to a ground point on the transceiver. Connect the "hot" center lead of the generator in series with a .05 mfd condenser to pin 1 of the microphone jack. Set generator frequency to 1KHz. and adjust same to 40 mv. output. Adjust RV4 to produce 80% modulation. To recheck the adjustment of RV4, adjust the generator output (5mv) so that the modulation monitor indicates 50%.

NOTE: Following the above steps will produce 100% modulation on speech. In no case shall modulation exceed 100%.

CRYSTAL FREQUENCY CHART

The following chart indicates which two crystal frequencies are used for each of the 46 channels:

LOW	23.290 MHz	23.340 MHz	23.390 MHz	23.440 MHz	23.490 MHz	23.540 MHz
14.950 MHz	1	5	9	13	17	21
14.960 MHz	2	6	10	14	18	22
14.970 MHz	3	7	11	15	19	
14.990 MHz	4	8	12	16	20	23

HIGH	23.290 MHz	23.340 MHz	23.390 MHz	23.440 MHz	23.490 MHz	23.540 MHz
14.950 MHz	24	28	32	36	40	44
14.960 MHz	25	29	33	37	41	45
14.970 MHz	26	30	34	38	42	
14.990 MHz	27	31	35	39	43	46

TV INTERFERENCE TRAP

This transceiver contains a built-in adjustable network in series with the antenna. When tuned correctly, it suppresses television interference. This network is a filter which offers little opposition to the transmitter frequency but will help eliminate the second harmonic radiation.

Turn on a TV receiver that you can see from your transmitting location, and tune to one of the three lower TV channels that has a station-operating in your vacinity. If you notice a "cross-hatch" or "wavy line" pattern on the screen while you are transmitting, it will be necessary to adjust the RF network coil slug screw (L1) in rear of cabinet, to eliminate or minimize this interference. This will usually only be necessary when the transmitter antenna is located near the TV antenna, or that of a neighbor.

VOLTAGE CHART

- 1. All readings taken with VTVM from chassis (negative) to point indicated.
- 2. Input to transceiver set at 220 volts AC. Similar readings are obtained with 12.6 volts DC input.
- 3. Transceiver set to channel 13.
- 4. PA switch in CB position, VOLUME and SQUELCH at minimum (counter-clockwise), FINE TUNING in center (normal) position.
- 5. 50 ohm dummy load connected to antenna connector.
- 6. Readings on individual units may vary by as much as $\pm 20\%$

NDV = No detectable voltage. NC = No connection. NM = Not measurable.

		PIN NUMBERS									
TUE	E	MODE	1	2	3	4	5	6	7	8	9
6BL8	V1	T R R E C	100	NDV	90	Н	Н	240	0.8	3.5	NDV
6BL8	V2	TR REC	30	NDV	125	Н	Н	115	2.3	0	-5 *
6BA6	V3	TR REC	NDV	0	Н	Н	230	78	0.9		
6BA6	V4	TR REC	NDV	0	Н	Н	230	65	0.9		
12AX7	V5	TR REC	90 90	NDV NDV	0.9	H H	H H	90 85	NDV NDV	0.7 0.65	NC NC
6BQ5	V6	TR REC	NC NC	NDV NDV	4.7 5.3	H H	H H	NC NC	250 270	NC NC	200 215
6GH8	V7	TR REC	65 70	-0.3* -0.3*	65 70	H H	H H	100 115	0.06 0.06	0 0	-4.5* -5.0*
6GH8	V8	TR REC	100	-0.4 *	110	Н	Н	180	2.0	0	-1.7*
6BA6	V9	TR REC	NDV	0	Н	Н	210	80	1.8		1. 11
6BQ5	V10	TR REC	NC	-15 *	2.0	Н	Н	NC	NM	NC	223
12AT7	V11	TR R C	100 110	NDV NDV	0 0	H H	H H	100 110	NDV NDV	0	

TUBE VOLTAGES

* Measured with 1 megohm resistor in series with DC probe. Reading may vary at grid pins, depending on crystal activity.

Point	TR	REC		
A	255 V	269 V		
В	197 V	218 V		
C	—94 V	-117 V		

