

## ISO2-CMOS MT8870 Integrated DTMF Receiver

SSUE 2

**Pin Connections** 

January 1985

9161-002-031-NA

### **Features**

- Complete DTMF receiver
- Low power consumption
- Internal gain setting amplifer
- Adjustable guard time
- Central Office Quality

### **Applications**

- Paging systems
- Repeater systems/mobile radio
- Credit card systems
- Remote Control
- Personal Computers

### Description

The MT8870 is a complete DTMF receiver integrating both the bandsplit filter and digital decoder functions, fabricated in Mitel's double poly ISO<sup>2</sup>-CMOS technology. The filter section uses switched capacitor techniques for high and low group filters; the decoder uses digital counting

VDD St/GT EST StD Q4 Q3 Q1 TOE 18 IN + IN-17 GS 16 VREF 4 15 14 13 12 IC\* 5 6 Ē OSC1 7 8 11 OSC2 10 vss \*runnect to VSS **Ordering Information** MT8870BE 18 PIN PLASTIC MT8870BC 18 PIN CERDIP

techniques to detect and decode all 16 DTMF tonepairs into a 4-bit code. External component count is minimized by on chip provision of a differential input amplifier, clock oscillator and latched 3-state bus interface.



Figure 1. Functional Block Diagram

### Absolute Maximum Ratings<sup>†</sup>

|   | Parameter                                             | Symbol | Min                  | Мах                   | Units |
|---|-------------------------------------------------------|--------|----------------------|-----------------------|-------|
| 1 | Power supply voltage V <sub>DD</sub> -V <sub>SS</sub> |        |                      | 6                     | V     |
| 2 | Voltage on any pin                                    |        | V <sub>SS</sub> -0.3 | V <sub>DD</sub> + 0.3 | V     |
| 3 | Current at any pin                                    |        |                      | 10                    | mA    |
| 4 | Operating temperature                                 |        | -40                  | + 85                  | °C    |
| 5 | Storage temperature                                   |        | <u>~</u> -65         | + 150                 | °C    |
| 6 | Package power dissipation                             |        |                      | - 1000                | mW    |

<sup>†</sup>Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Derate above 75 °C at 16 mW / °C All leads soldered to board.

### **DC Electrical Characteristics**

|    |               | Characteristics                    | Sym             | Min  | Турт | Max  | Units | Test Conditions <sup>†</sup>                         |
|----|---------------|------------------------------------|-----------------|------|------|------|-------|------------------------------------------------------|
| 1  | s             | Operating supply voltage           |                 | 4.75 | 5.0  | 5.25 | V     |                                                      |
| 2  | י.<br>ני<br>פ | Operating supply current           | 100             |      | 3.0  | 90   | mA    |                                                      |
| 3  | 2<br>L<br>V   | Power consumption                  | Po              |      | 15   | 45   | mW    | f = 3.58MHz; V <sub>DD</sub> = 5V                    |
| 4  |               | High level input                   | V <sub>IH</sub> | 3.5  |      |      | v     |                                                      |
| 5  | 4             | Low level input voltage            | ViL             |      |      | 1.5  | V     |                                                      |
| 6  | P             | Input leakage current              | I:H/IIL         |      | 0.1  |      | μA    | V <sub>IN</sub> = V <sub>SS</sub> or V <sub>DD</sub> |
| 7  | U             | Pull up (source) current           | Iso             |      | 7.5  | 15   | μΑ    | TOE (pin 10) = 0V                                    |
| 8  | s             | Input impedance (IN + , IN-)       | R.N             |      | 10   |      | MΩ    | @ 1 kHz                                              |
| 3  |               | Steering threshold voltage         | V               | 22   |      | 2.5  | V     |                                                      |
| 10 |               | Low level output voltage           | VOL             |      |      | 0.03 | v     | No load                                              |
| 11 | U<br>U        | High level output voltage          | VOH             | 4.97 |      |      | V     | No load                                              |
| 12 | T<br>P        | Output low (sink) current          | 1OL             | 1    | 2.5  |      | mA    | V <sub>OUT</sub> = 0.4V                              |
| 13 | Ū             | Output high (source) current       | Юн              | 0.4  | 0.8  |      | mA    | V <sub>OUT</sub> = 4.6V                              |
| 14 | r<br>S        | V <sub>Ref</sub> output voltage    | VRef            | 2.4  |      | 2.8  | V     | No load                                              |
| 15 | ,             | V <sub>Ref</sub> output resistance | R <sub>OR</sub> |      | 10   |      | κΩ    |                                                      |

.

\* Typical figures are at 25 C and are for design aid only i not guaranteed and not subject to production testing  $V_{DD}$  = 5V ± 5% a, Vss = 0V. Voltages are with respect to ground (Vss) unless otherwise stated

|      | Characteristics                   | Sym             | Min | Typ≭ | Max | Units           | Test Conditions                    |
|------|-----------------------------------|-----------------|-----|------|-----|-----------------|------------------------------------|
| 1 11 | nput leakage current              | liN             |     | 100  |     | nA              | $V_{SS} \leq V_{1N_2} \leq V_{DD}$ |
| 2 Ir | nput resistance                   | R <sub>IN</sub> |     | 10   |     | MΩ              |                                    |
| 3 lr | nput offset voltage               | Vos             |     | 25   |     | mV              |                                    |
| 4 P  | Power suply rejection             | PSRR            |     | 60   |     | dB              | 1 KHz                              |
| 5 C  | Common mode rejection             | CMRR            |     | 60   |     | dB              | $-3.0V \le V_{1N} \le 3.0V$        |
| 6 C  | DC open loop voltage gain         | AVOL            |     | 65   |     | dB              |                                    |
|      | Open loop unity gain<br>bandwidth | fc              |     | 1.5  |     | MHz             |                                    |
| 8 C  | Dutput voltage swing              | Vo              |     | 4.5  |     | V <sub>pp</sub> | $R_L \ge 100 K \Omega$ to $V_{SS}$ |
| 9 1  | Maximum capacitive load (GS)      | CL              |     | 100  |     | рF              |                                    |
| 10 N | Maximum resistive load (GS)       | RL              |     | 50   |     | ΚΩ              |                                    |
| 11 0 | Iommon mode range                 | VCM             |     | 3.0  |     | Vpp             | No Load                            |

# Operating Characteristics<sup>†</sup> - Voltages are with respect to ground (V<sub>SS</sub>) unless otherwise stated Gain Setting Amplifier

<sup>†</sup> V<sub>DD</sub> = 5 V, V<sub>SS</sub> = 0 V, I<sub>A</sub> = 25° C

,

Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing

### AC Electrical Characteristics<sup>†</sup> - Voltages are with respect to ground (V55) unless otherwise stated

|     | _      | Characteristics           | Sym | Min          | Тур⊺ | Max | Units             | Notes          |
|-----|--------|---------------------------|-----|--------------|------|-----|-------------------|----------------|
|     | s      | Valid input signal levels |     | -29          |      |     | dBm               | 1,2,3,5,6,9    |
| ,   | t      | (each tone of composite   |     | 27.5         |      |     | mV <sub>RMS</sub> | 1,2,3,5,6,9    |
| ļ ' | G<br>N | signal)                   |     |              |      | + 1 | dBm               | 1,2,3,5,6,9    |
|     | A<br>L |                           |     |              |      | 883 | mV <sub>RMS</sub> | 1,2,3,5,6,9    |
| 2   | c      | Positive twist accept     |     |              | 10   |     | dB                | 2,3,6,9        |
| 3   | 0      | Negative twist accept     |     | •            | 10   |     | dB                | 2,3,6,9        |
| 4   | N<br>D | Freq. deviation accept    |     | ± 1.5% ± 2Hz |      | -   | Nom.              | 2,3,5,9        |
| 5   | I<br>T | Freq. deviation reject    |     | ± 3.5%       |      |     | Nom.              | 2,3,5,9        |
| 6   | 1      | Third tone tolerance      |     |              | -16  |     | dB                | 2,3,4,5,9,10   |
| 7   | N      | Noise tolerance           |     |              | -12  |     | dB                | 2,3,4,5,7,9,10 |
| 8   | 3      | Dial tone tolerance       |     |              | + 22 |     | dB                | 2,3,4,5,8,9,11 |

 $t_{VDD} = 5 V$ , Vss = 0, TA = 25° C and fC = 3.579545 MHz using test circuit shown in Figure 2

#### NOTES

1 dBm = decibels above or below a reference power of 1 mW into a 600 ohm load.

2. Digit sequence consists of all DTMF tones

3 Tone duration = 40 ms, tone pause = 40 ms.

- 4 Signal condition consists of nominal DTMF frequencies
- 5. Both tones in composite signal have an equal amplitude
- 6. Tone pair is deviated by ±1.5% ± 2Hz.
- 7. Bandwidth limited (3KHz.) Gaussian noise

8. The precise dial tone frequencies are (350 Hz and 440 Hz)  $\pm$  2 m  $_{0}$ 

9 For an error rate of better than 1 in 10,000

10. Referenced to lowest level frequency component in DTMF signal

11. Referenced to the minimum valid accept level

|    |             | Characteristics                      | Sym               | Min    | Typ‡   | Max    | Units | Test Conditions         |
|----|-------------|--------------------------------------|-------------------|--------|--------|--------|-------|-------------------------|
| 1  |             | Tone present detect time             | t <sub>DP</sub>   | 5      | 11     | 14     | ms    | see Figure 3            |
| 2  |             | Tone absent detect time              |                   | 0.5    | 4      | 8.5    | ms    | see Figure 3            |
| 3  | T           | Tone duration accept                 | t <sub>REC</sub>  |        |        | 40     | ms    | User adjustable         |
| 4  | M           | Tone duration reject                 | t <sub>REC</sub>  | 20     |        |        | ms    | User adjustable         |
| 5  | N<br>G      | Interdigit pause accept              | t <sub>iD</sub>   |        |        | 40     | ms -  | User adjustable         |
| 6  |             | Interdigit pause reject              | t <sub>DO</sub>   | 20     |        | · ^ ·  | ms    | User adjustable         |
| 7  |             | Propagation delay (St to Q)          | t <sub>PQ</sub>   |        | · 8    | 11     | μs    | TOE = V <sub>DD</sub>   |
| 8  | 0           | Propagation delay (St to StD)        | t <sub>PStD</sub> |        | 12     |        | μs    | TOE = V <sub>DD</sub>   |
| 9  | Ŭ           | Output data set up ( Q to StD)       | tQStD             |        | 3.4    |        | μs    | TOE = V <sub>DD</sub>   |
| 10 | U<br>T<br>S | Propagation delay (TOE to Q ENABLE)  | t <sub>PTE</sub>  |        | 50     |        | ns    | RL = 10KΩ<br>CL = 50 pF |
| 11 | Ī           | Propagation delay (TOE to Q DISABLE) | tptD              |        | 300    |        | ns    | RL = 10KΩ<br>CL = 50 pF |
| 26 |             | Crystal /clock frequency             | fc                | 3.5759 | 3.5795 | 3.5831 | MHz   |                         |
| 27 | c           | Clock input rise time                | t <sub>LHCL</sub> |        |        | 110    | ns    | Ext. clock              |
| 28 | ō           | Clock input fall time                | tHLCL             |        |        | 110    | ns    | Ext. clock              |
| 29 | с<br>к      | Clock input duty cycle               | DCCL              | 40     | 50     | 60     | %     | Ext. clock              |
| 30 |             | Capacitive load (OSC2)               | CLO               |        |        | 30     | рF    |                         |

### AC Electrical Characteristics<sup>†</sup> - Voitages are with respect to ground (VSS) unless otherwise stated

 $^5V_{DD}$  = 5V, V  $_{5S}$  = 0V T  $_{A}$  = 25  $^\circ$  C and  $^5C$  = 3 579545 MHz, using test circuit in Figure 2

# Typical figures are at 25 C and are for design aid only ill not guaranteed and not subject to production testing



Figure 2. Single Ended Input Configuration

## ISO2-CMOS MT.8870

| Pin#  | Name            | Description                                                                                                                                                                                                                                                                                                                                                                           |
|-------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | IN+             | Non-inverting op-amp input.                                                                                                                                                                                                                                                                                                                                                           |
| 2     | IN-             | Inverting op-amp input.                                                                                                                                                                                                                                                                                                                                                               |
| 3     | GS              | Gain select. Gives access to output of front end differential amplifier for connection of feedback resistor.                                                                                                                                                                                                                                                                          |
| 4     | VREF            | Reference voltage output, nominally $V_{DD}/2$ is used to bias inputs at mid-rail (see Fig.2).                                                                                                                                                                                                                                                                                        |
| 5     | IC              | Internal connection. Must be tied to V <sub>SS</sub> .                                                                                                                                                                                                                                                                                                                                |
| 6     | IC              | Internal connection. Must be tied to Vss.                                                                                                                                                                                                                                                                                                                                             |
| 7     | OSC1            | Clock input.                                                                                                                                                                                                                                                                                                                                                                          |
| 8     | OSC2            | Clock output. A 3.5795 MHz crystal connected between OSC1 and OSC2 completes the internal oscillator circuit.                                                                                                                                                                                                                                                                         |
| 9     | Vss             | Negative power supply input.                                                                                                                                                                                                                                                                                                                                                          |
| 10    | TOE             | 3- state output enable (input). Logic high enables the outputs Q1-Q4. Internal pull up.                                                                                                                                                                                                                                                                                               |
| 11-14 | Q1-Q4           | 3-state data outputs. When enabled by TOE, provide the code corresponding to the last valid tone-pair received (see Fig. 5).                                                                                                                                                                                                                                                          |
| 15    | StD             | Delayed steering output Presents a logic high when a received tone-pair has been registered and the output latch updated; returns to logic low when the voltage on St/Gt falls below $V_{TSt}$                                                                                                                                                                                        |
| 16    | ESt             | Early steering output. Presents a logic high once the digital algorithm has detected valid tone pair (signal condition). Any momentary loss of signal condition will cause ESt to return to a logic low.                                                                                                                                                                              |
| 19    | St/GT           | Steering input/guard time output (bi-directional). A voltage greater than $V_{TST}$ detected at St causes the device to register the detected tone pair and update the output latch. A voltage less than $V_{TST}$ frees the device to accept a new tone pair. The GT output acts to reset the external steering time-constant; its state is a function of ESt and the voltage on St. |
| 18    | V <sub>DD</sub> | Positive power supply input.                                                                                                                                                                                                                                                                                                                                                          |



### **Functional Description**

The MT8870 monolithic DTMF receiver offers small size, low power consumption and high performance. Its architecture consists of a bandsplit filter section, which seperates the high and low group tones, followed by a digital counting section which verifies the frequency and duration of the received tones before passing the corresponding code to the output bus.

### **Filter Section**

Seperation of the low-group and high group tones is achieved by applying the DTMF signal to the inputs of two sixth-order switched capacitor band pass filters, the band-widths of which correspond to the low and high group frequencies. The filter section also incorporates notches at 350 and 440 Hz for exceptional dial tone rejection (see Fig. 4). Each filter output is followed by a single order switched capacitor filter section which smooths the signals prior to limiting. Limiting is performed by high-gain comparators which are provided with hysteresis to prevent detection of unwanted low-level signals. The outputs of the comparators provide full rail logic swings at the frequencies of the incoming DTMF signals.

#### **Decoder Section**

Following the filter section is a decoder employing digital counting techniques to determine the frequencies of the incoming tones and to verify that they correspond to standard DTMF frequencies. A complex averaging algorithm protects against tone

simulation by extraneous signals such as voice while providing tolerance to small frequency deviations and variations. This averaging algorithm has been developed to ensure an optimum combination of immunity to talk-off and tolerance to the presence of interfering frequencies (third tones) and noise. When the detector recognizes the presence of two valid tones (this is referred to as the "signal condition" in some industry specifications) the "Early Steering" (ESt) output will go to an active state. Any subsequent loss of signal condition will cause ESt to assume an inactive state (see "Steering Circuit").

#### Steering Circuit

Before registration of a decoded tone pair, the receiver checks for a valid signal duration (referred to as character recognition condition) This check is performed by an external RC time constant driven by ESt. A logic high on ESt causes  $v_c$  (see Fig. 6) to rise as the capacitor discharges.

Provided signal condition is maintained (ESt remains high) for the validation period ( $t_{GTP}$ ),  $v_c$ reaches the threshold (Vrst) of the steering logic to register the tone pair, latching its corresponing 4-bit code (see Fig. 5) into the output latch. At this point the GT output is activated and drives v<sub>c</sub> to VDD. GT continues to drive high as long as ESt remains high. Finally, after a short delay to allow the output latch to settle, the delayed steering output flag (StD) goes high, signalling that a received tone pair has been registered. The contents of the output latch are made available on the 4-bit output bus by raising the three state control input (TOE) to a logic high. The steering circuit works in reverse to



| FLOW | FHIGH | NO  | TOE | Q4 | Q3 | Q2 | Q1 |
|------|-------|-----|-----|----|----|----|----|
| 697  | 1209  | 1   | н   | 0  | 0  | 0  | 1  |
| 697  | 1336  | 2   | Н   | 0  | 0  | 1  | 0  |
| 697  | 1477  | 3   | Н   | 0  | 0  | 1  | 1  |
| 770  | 1209  | 4   | Н   | 0  | 1  | 0  | 0  |
| 770  | 1336  | 5   | Н   | 0  | 1  | 0  | 1  |
| 770  | 1477  | 6   | Н   | 0  | 1  | 1  | 0  |
| 852  | 1209  | 7 - | н   | 0  | 1  | 1  | 1  |
| 852  | 1336  | 8   | Н   | 1  | 0  | 0  | 0  |
| 852  | 1477  | 9   | Н   | 1  | 0  | 0  | 1  |
| 941  | 1336  | 0   | Н   | 1  | 0  | 1  | 0  |
| 941  | 1209  | *   | н   | 1  | 0  | 1  | 1  |
| 941  | 1477  | #   | Н   | 1  | 1  | 0  | 0  |
| 697  | 1633  | А   | н   | 1  | 1  | 0  | 1  |
| 770  | 1633  | В   | н   | 1  | 1  | 1  | 0  |
| 852  | 1633  | С   | н   | 1  | 1  | 1  | 1  |
| 941  | 1633  | D   | Н   | 0  | 0  | 0  | 0  |
| -    | -     | ANY | L   | Z  | Z  | Z  | Z  |





Figure 6. Basic Steering Circuit

validate the interdigit pause between signals. Thus, as well as rejecting signals too short too be considered valid, the receiver will tolerate signal interruptions (drop out) too short to be considered a valid pause. This facility, together with the capability of selecting the steering time constants externally, allows the designer to tailor performance to meet a wide variety of system requirements.

### **Guard Time Adjustment**

In many situations not requiring selection of tone duration and interdigital pause, the simple steering circuit shown in Fig. 6 is applicable. Component values are chosen according to the formula:

$$t_{REC} = t_{DP} + t_{GTP}$$
  
 $t_{ID} = t_{DA} + t_{GTA}$ 

The value of  $t_{D^{p}}$  is a device parameter (see table) and  $t_{\text{REC}}$  is the minimum signal duration to be recognized by the receiver. A value for C of 0.1  $\mu$ F is recommended for most applications, leaving R to be selected by the designer.

Different steering arrangements may be used to select independantly the guard times for tone present ( $t_{GTP}$ ) and tone absent ( $t_{GTA}$ ). This may be necessary to meet system specifications which place both accept and reject limits on both tone duration and interdigital pause. Guard time adjustment also allows the designer to tailor system parameters such as talk off and noise immunity. Increasing tREC improves talk-off performance since it reduces the probability that tones simulated by speech will maintain signal condition long enough to be registered. Alternatively, a relatively short t<sub>REC</sub> with a long t<sub>DO</sub> would be appropriate for extremely noisy environments where fast aquisition time and immunity to tone drop-outs are required. Design information for guard time adjustment is shown in Figure 7.

### **Differential Input Configuration**

 The input arrangement of the MT8870 provides a differential-input operational amplifier as well as a bias source(V<sub>Ref</sub>) which is used to bias the inputs at mid-rail. Provision is made for connection of a feedback resistor to the op-amp output (GS) for adjustment of gain. In a single-ended configuration, the input pins are connected as shown in Fig. 2 with the op-amp connected for unity gain and Veur biasing the input at \$V\_bb. Fig. 8 shows the differential configuration, which permits the



Figure 7. Guard Time Adjustment

adjustment of gain with the feedback resistor R5.

### **Crystal Oscillator**

• · · · ·

The internal clock circuit is completed with the addition of an external 3.58 MHz crystal and is normally connected as shown in Figure 2 (Single Ended Input Configuration). However, it is possible to configure several MT8870 devices employing only a single oscillator crystal. The oscillator output of the first device in the chain is coupled through a 30 pF capacitor to the oscillator input (OSC1) of the next device. Subsequent devices are connected in a similar fashion. Refer to Fig. 9 for details. The problems associated with unbalanced loading are not a concern with the arrangement shown, ie; precision balancing capacitors are not required.



Figure 8. Differential Input Configuration



Figure 9. Oscillator Connection